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PREFACE

This Memorandum treats fiva different problems in-

volving the determination of the shortest path through a

discrete network. Previous important results are reviewed,

and misleading procedutws are identified and (in some

cases) modified. Conclusions are drawn and recommendations

are made concerning efficient algorithms.

This work forms a part of RAND's continuing interest

in problems and techniques in optimization theory.

The author, a member of the Industrial Engineering and

Operations Research faculty at the University of California,

Berkeley, is a consultant to the Computer Sciences Depart-

ment of The RAND Corporation.



SUMmiAY

-.. ThI- Memorandum t-r-eats five discrete shortest-path
A

problems: 1) determining the shortest path between two

specified nodes of a network; 2) determining the shortest-

paths between all pairs of nodes of a network; 3) determ-

ining the second, third, etc. shortest path; 4) determining

of the fastest path through a network with travel times

depending on the departure time; and 5) finding the shortest

path between specified endpoints that passes through speci-

fied intermediate nodes. Existing good algorithms are

identified while some others are modified to yield ef-

ficient procedures. Also certain misrepresentations and

errors in the literature are demonstrated.
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I. INTRODUCTION

In the never-ending search for good algorithms for

various discrete shortest-path problems. some authors have

apparently overlooked or failed to appreciate previous

results. Consequently, certain recentlyreported pro-

cedures are inferior to older ones. Also, occasionally,

inefficient algorithms are adapted to new, generalized

problems where more appropriate modifiable methods already

exist. Finally, the litr.ature contains some erroneous

procedures. This Memondurm. briefly considers various

versions of discrete--pt'b problems in the Light of known

results and some origibal ideas.

Our observations are, of course, by no means definitive

or final. However, it is hoped that our somewhat skeptical

survey of current literature will put the interested reader

on guard and perhaps save him, or his digital computer,

considerable time and trouble. Since our objective is

more to alert than to resolve conclusively, this Memorandum

is informal and, at times, cryptic. We hope that even our

most laconic remarks will prove enlightening for any reade'

deeply involved with the particular procedure.

Corresponding to almost any shortest-path algorithm,

some special network structure exists for which the algorithm
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is efficient. Consequently, to give meaning to our con-

clusions, we shall generally restrict our attention to

problems in yhich every pair of nodes is connected by an

Sarc (perhaps of infinite length), and shall develop bounds

on the number of computational steps. One procedure is

considered significantly superior to another when these

bounds differ by a multiplicative factor involving N, the

number of nodes. When the resulting formulas differ by

only a multiplicative constant, the user's choice of

algorithm should be determined by problem structure, com-

puter configuration, and programming language.

iI

tI
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.II THE SHORTEST PATH BETWEEN A SPECIFIED PAIR OF NODES

Given a set of N nodes-, numbered arbitrarily from

1 to N, and the NxN matrix D, not necessarily symmetric-,.

whose element d.. represents the length of the directed

arc connecting node i to node j, find the path of shortest

length connecting node 1 and node N. Assume initially

that d.. = 0 and d.. z 0. If no arc is directed from

node i to node j:, then d. = •; or, for purposes of digital

I

computation, di is taken large.

The computationally most efficient procedure was

described first by Dijkstra [1] in 1959, and in 1960 by

Whiting and Hillier. The algorithm assigns tentative

labels, which are upper bounds on the shortest distance

from node 1, to all nodes; after the fundamental iterative

step described below is repeated exactly once for each

node, the tentative node laLels a-e all permanent and

r represent shortest distances.

Initially, label node 1. with the penr.anent value zer¢o,

and tentatively label all other nodes infinity. Then, one

by one, compare each node label except that at node 1 with

the sum of the label of node 1 (i.e., 0) and the direct

See Ref. 2, last paragraph beginning on p. 39.
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distance from node 1 to the node in question. The smaller

of the two numbers is the new tentative label.

Next, determine the smallest of the N-1 tentative

labels and declare it permanent. Suppose that node k is

the one permanently labelled. Then, one at a time, com-

pare each of the N-2 remaining tentative node labels to

the sum of (a) the label just assigned perm.snently to

node k and (b) the direct distance from node k to the node

under consideration. The smaller of the two numbers be-

comes the tentative label. Determine the minimum of the

N-2 tentative labels, declare it permanent, and make it

the basis of another modification of the remaining tenta-

tive labels of the type described above. When, after at

most N-1 executions of the fundamental iterative step,

node N is permanently labelled, the procedure terminates.

(If the shortest paths from node I to all other nodes are

desired, the fundamental iterative step must be executed

exactly N-1 times.)

The optimal paths can easily be reconstructed if an

optimal policy table (in this case, a table indicating the

node irom which each permanently labelled node was labelled)

is recorded. Alternatively, no policy table need be con-

structed, since it can always be determined from the final
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node labels by ascertaining which nodes have labels that

differ by exactly the length of the connecting arc.

Tim proof of the validity of the method is inductive,

with the key step as follows. Suppose that, at a particular

stage, the nodes are divided into two mutually exclusive

and collectively exhaustive sets--Set 1 contains the

permanently labelled nodes and Set 2 the temporarily labelled

ones. The node labels of Set 1 are correct minimum distances

from the source node. The node labels of Set 2 are the

shortest distances from the source that can be attained

by a path in which all except the terminal node belong to

Set 1. Then the minimum-label node of Set 2--call it

r node i--can be transferred to Set 1, because if a shorter

path to node i existed it would have to contain a first

node that is currently in Set 2. However, that node must

be farther away from the source, since its label exceeds

that of node i. The subsequent use of node i to reduce

the labels of adjacent nodes belonging to Set 2 restores

to Set 2 the property assumed above.
N(N-I)

This algorithm requires 2 additions and N(N-I)

comparisons to solve the problem--totaled over all steps,

M. Bellmore points out, in a private communication,
that if arcs of length 0 are permitted, special care must
be taken to prevent possible cycling during the phase of
the calculation used to deduce the path from the value table.
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N(N-l) additions and comparisons are necessary to compute
2

N(N-l)tentative node labels and comparisons are necessary2

to find the minimum label at each step. All steps are

naturally and easily programmed except that of distinguish-

ing which nodes are permanently and which tentatively

labelled. Some computational experimentation indicates

that an efficient method of distinguishing is to attach

to each node an index number that changes from, say, 0 to

1 when a node label becomes permanent. When branching out

from a just-permanently-labelled node, the index of the

destination node is consulted as each outgoing arc is con-

sidered. If the index is zero, the temporary label of the

destination is reduced, if appropriate. At the same time,

memory cells designating the smallest temporary label en-

countered thus far during the branching and the associated

destination node are modified, if appropriate. This pro-

gramming device requires (N-I)2 comparisons to consult the
N2 22 '

indices. Hence, a total of about N2 /2 additions and 2N

comparisons are necessary.

Pollack and Wiebenson* describe and credit to Minty'

the first (and hence of some historical interest) system-

atic, easily programmed, permanent-label-setting precursor

See Ref. 3, p. 225.
tPollack and Wiebenson cite, without date, a private t

communication by Minty.

i 4,
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of the above method. That algorithm is probably due A

originally to Ford and Fulkerson [4', who developed it 4
for a more general flow problem, of which the shortest-

path problem is a special case requiring fastest flow

of one item. The method requires approximately N3 /6

additions and comparisons for solving the shortest-path

problem, and hence is not recommended.

The Minty-Ford-Fulkerson procedure can be accelerated--

but not enough to compete in general with the Dijkstra

algorithm--by use of a modification reported by Whiting

and Hillier (the first method of Ref. 2) and Dantzig [5].

In their method, derived independently of each other and

of the Minty and Ford-Fulkerson [4] works, outgoing arcs

from each node are listed from shortest to longest. This

obviates a search for the shortest arc out of each per-

manently labelled node at each step, and reduces the number
3

of additions and comparisons from N to N While this
6 2

number suggests that the method improves the Dijkstra pro-

cedure, it is misleading for two reasons. First, ordering

the data as required by the method necessitates approximately

N2 log2 N additional comparisons. Second, the method must

delete arcs from lists as they are used; and also, each time

a node is permanently labelled, the method must delete, from
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all lists, arcs that lead into that node. This data

2
modification requires about 3N comparisons, plus elaborate

programming of list-processing procedures. Therefore,

except perhaps for sparse networks with far fewer than N

arcs, the method is not recommended.

Some authors have proposed simultaneously fanning out

from both endpoints as a means of reducing computation.

Berge and Ghouila-Houri [6] falsely assert that when, for

the first time, some node is permanently labelled in both

fans, the optimal path results and goes through that node.

Dantzig [7] is vague about his stopping procedure. In the

problem depicted below, if the Dijkstra scheme is first

used to permanently label the node nearest A reachable

from A, then the node nearest B from which B can be reached,

then the second closest to A, etc., tim node C is perma-

nently labelled both "out from Alt and "into B" after two

applications of the procedure at each end. Yet ACE is not

the shortest path.

D 3

B
A

4,,

C
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When the correct stopping procedure given cryptically

by Nicholson [8] and explained clearly by Murchland [9) is

used, the least upper bound on the computation required by

a two-ended procedure exceeds that for the one-ended

Dijkstra algorithm, contrary to assertions by Berge and

Ghouila-Houri [6]. This happens because, as more nodes

become permanently labelled in the Dijkstra procedure, a

decreasing number of additions and comparisons are necessary

to modify all tentative labels. As a result, determining
N

the first E permanent labels requiras just over three-

fifths the work of the complete solution. If the Nicholson

Nstopping condition is satisfied long before • nodes have

been permanently labelled from each terminus, a savings

may accrue; but, in a case where nearly all N nodes must

be permanently labelled from either one end or the other,

the two-ended procedure will prove inefficient.

All these methods require all elements of D to be

non-negative. A related problem assumes that some d..

are negative, but the sum of the di.. around any loop is

positive. Such data arise when arc numbers represent

r costs, and some arcs are profitable. (The problem has no

solution if negative loops exist. Should negative loops

exist but be excluded from admissible paths, no known

algorithm is satisfactory.)

IJ



S° -10-

We present, first, a well-known algorithm that either

solves the problem, with negative di., in at most N3 addi-

tions and comparisons, or detects the existence of a negative

[ cycle in that number of steps; second, a recent improvement

*that halves the number of calculations; and third, a dif-

ferent procedure that is competitive. While we know of no

better procedures, the disparity in methods and bounds

indicates the probability of further improvements.

The basic procedure has been proposed, originally for

problems with d.. Ž 0, by Ford [10], Moore [11], Bellman

[121, and undoubtedly others. This procedure repeatedly

updates all node labels. For the initial condition given

in Eq. (1), the node label f(k) represents the length of
2I

the shortest path that connects node 1 and node i and that

contains k+l or fewer arcs. Unlike the permanent-label-

setting procedures recommended when all d.. are non-
.13

negative, in this procedure no node Labels are considered

final until all are. The fundamental recursion is

f(k+l) = min[d.. + f~k)] (1)

i 1i
f (0) =di.
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For the case d.. z 0, convergence occurs whenever

fk) = f.k+l) for all i, or after N-2 iterations if the

former situation occurs no sooner (since no shortest path

contains more than N-I arcs). If (N-2) iterations are

required and if each pair of nodes is connected by an arc,

2then (N-2)(N-I) additions and comparisons take place.

This method is inefficient for a positive-distance

problem if two or more iterations of Eq. (1) are needed;

and, unless all N-2 iterations are required, as many

iterations will be necessary as the number of arcs in the

shortest path from node 1 to node j, where node j is the

node whose shortest path has the greatest number of arcs.

When this procedure is applied to a problem with

some negative dij, either convergence will occur for

k r N-I, indicating no negative cycles exist and the solu-
tion is optimal; or a change in some f. will occur on the

(N-l)st iteration, indicating the existence of a negative

loop.

Yen [13] has recently reduced the computation by a

factor of two. He suggests the recursion, for k=l,2,...,
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f.m2k-l) = m in d.. + f(2k) 2k-2
l~ ~ j '""

i=!,.*..,N,

F. (2)
f(2k) = m i n d. + f.(2k) f.2k-I

j>j i 3 '

Si=N,...,l

with initial condition f(0) d Using new values of f
withinitalf dii"

as soon as they are determined, and processing the nodes

alternately forwards and backwards, produces bounds on

convergence the same as above; yet, minimizing over only

nodes previously treated necessitates only half as many

additions and comparisons per iteration.

A scheme of Dantzig, Blattnpr, and Rao [14] is novel

and, with a slight modification, efficient. It can detect

a negative loop much more quickly than the above procedures,

if such a loop exists; it is as fast, if no such loop exists.

Unfortunately, the procedure is difficult to explain, prove,

or program.

Note that in Eq. (1) the minimization is over all j
while in Eq. (2) it is over only either j < i or j > i.
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Suppose that, at iteration k+l, node numbers f •

have been assigned to nodes I through k, each representing

the length of the shortest path to node i that may pass

through intermediate nodes 1 through k, but no others.

The length of the shortest path to node k+l, using only

nodes I through k+l, is found by

f(k+l) .min 1k) +d (3)
k+l j j,k+l

LJ
j=l,.k

(k)
Then the node numbers f.k, j=l,...,k, are reduced if,

-7 J

by initroducing node k+l into a path, a shorter distance

results. This calculation involves a sub-iteration that

first finds the node whose distance can be most reduced by

introducing node k+l into the path, then the node with the

second-largest reduction, etc. This reduction is accom-

plished in a manner analogous to the Dijkstra procedure [1].

At iteration k+l, Eq. (3) involves a negligible k additions

and comparisons. The updating, if carried out as in Ref. 1,
k2

requires at most T- comparisons with a flag indicating nodes

Reference 14 gives a less efficient method, involving
list processing and reordering.
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L2
already reduced, and 2- calculations involving two additions

and a comparison. Hence, for N nodes, the method appears
N3

to involve at most - additions and comparisons--slightly

bettering the upper bound for the Yen [13] algorithm.

Since, as indicated in the introduction, such improvements

as reducing the number of computational steps from to
N 3

3  easily negated by computer hardware or programming

language idiosyncracies, both of the latter two methods

should be seriously considered for application.

In concluding our treatment of the problem of finding

the shortest path between a specified source node and all

other nodes of a network, let us briefly summarize the re-

suits of some computational experiments of Hitchner [15]

involving various specially structured problems, all with

the restriction that d.. • 0. Hitchner compares one method13

that successively reduces node labels by considering neigh-

boring nodes (in the spirit of the algorithm described by

Eq. (1)) with four variations on the permanent-label-setting

Dijkstra procedure. Three "f the latter keep lists to avoid

repeated minimization over the set of all non-permanently

labelled nodes. He concludes that, for problems with only

*i

The sub-iteration terminates when no further re-
duction is found.

|

1
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four arcs emanating from each node (such as in "ideal"

city maps), the procedure based on Eq. (1) and one special

list-keeping version of the Dijkstra method are superior

(because! they depend more on the number of arcs than nodes).

For problems with 25 percent or more of the N(N-l),possible

arcs present, the Dijkstra procedure (with no sophisticated

list-processing adornments)-out:-performed all competitors.

(

I-e
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III. THE SHORTEST PATHS BETWEEN ALL PAIRS OF NODES

OF A NETWORK

Two somewhat different, but equally elegant and

efficient, algorithms are recommended. One was published

j without comment as an obscure nine-line ALGOL algorithm

in 1962 by Floyd [16], based on a procedure by Warshall

[17], and was rediscovered and appropriately extolled in

1965 by Murchland [18]. The other was produced in 1966

by Dantzig [19]. Since both require exactly the same

number of calculations--N(N-l)(N-2) additions and corn-

parisons for the case d.. z 0--oare easily proved and pro-
ij

grammed, and culminate a steady progression of successive

improvements ([20], [12], [21], [22]; actually Ref. 16

precedes the inferior algorithm of Ref. 22), there is

good reason to believe that they are definitive. While

the reader should consult the primary sources cited above,

we briefly describe the algorithms here.

The Floyd procedure [16] builds optimal paths by

inserting nodes, when appropriate, into more direct paths.

Starting with the NxN matrix D of direct distances, N

matrices are constructed sequentially. The kth such matrix

can be interpreted as giving the lengths of the shortest

allowable paths between all node pairs (i,j), where
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only paths with intermediate nodes belonging to the set

of nodes I through k are allowed. Th,. (k+l)st matrix is

constructed from the kth by using the formula

(k~l) Fdk) (k) .(k),(4
K dSl1  min [d(k d + d(4)

dij 3in ',kl k+l, i

d..) = d..Ij 13

Here, k, which io initially zero, is incremented by 1 after

i and j have ranged over the values 1,...,N; and k = N-1 at

termination.

To appreciate the rationale of the procedure, suppose

the shortest path from node 8 to node 5 is 8 - 3 - 7 - 1 - 9 - 5.

Iteration 1 will replace d7 9 by d7 1 + d1 9 ; iteration 3 will

replace the current value of d8 7 (which may or may not be

the original value) by d8 3 + d3 7 (the optimal value);

iteration 7 will replace the current d8 9 by d8 7 + d79'

where these numbers are the optimal values as computed above;

and iteration 9 will obtain for d8 5 the sum of d8 9 and d9 5 ,

when d8 9 is as computed at iteration 7. Hence, the correct

shortest distance is obtained. (The above justification is,

of course, not a proof.)
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A minor modification, in case some d.. are negative,

detects negative Inops, if any exist, and otherwise yields

correct results. An additional advantage of this procedure

is that N-1 additions and comparisons are easily circumvented

whenever an element d(k) equals infinity in Eq. (4) (i.e
3 ,k+l ii4

no path, with only nodes 1 through k as intermediate

nodes, connects nodes i and k+l). As in the case of the

particular initial-terminal pair problem, an optimal policy

table (matrix) associating with the initial-terminal node

pair (i,j) the next node along the best path from i to j

can be developed during the computation, or can be deduced

from the final shortest-distance matrix.

Dantzig's scheme [19] generates successive matrices of

increasing size. The kth iteration produces a kxk matrix

whose elements are the lengths of the shortest paths con-

necting nodes i and j, i=l,...,k, j=l,...,k, in which

only nodes 1 through k may be intermediate nodes. Given

the kxk matrix D(k) with elements d2k) as defined above,

compute D(k+l) as follows:

The additional computation introduced in order to
test for the presence of infinities adds about 5 percent
to the computing time. For a sample problem with 10 nodes
and 34 arcs and, hence, 56 infinities initially, the test
yielded a 5 percent net improvement over no test. The
amount of net improvement or degradation depends on the
actual network configuration as well as the number of non-
existent arcs.

I ; . . .
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(k+l)
1) Compute d. for i=l,...,k by

d(k+l) min [d (k) + d.dik+l 1=5j k ij 3,k+l]

i(k+l)l
and similarly compute k+l),i

2) Compute d(k+l) for i=l,...,k, j=l,...,k by
ij

min [d k) =(k+l) + dk+l d•ij =3in -dj , i,k+I

That the di.) yielded by the above steps are as previously

defined is obvious after a little thought. (Reference 19

gives a proof.) If all distances are positive, d.k) =

for all i and k. If not, d kA can be computed easily; and

if any d(k) is negative, a negative loop exists.
1i

K The Dantzig algorithm seemingly can not exploit non-

existent arcs in a manner similar to Floyd's.

If the above algorithms, requiring N(N-I)(N-2) addi-

tions and comparisons, are indeed as efficient as possible,

then the most efficient particular-pair algorithm must

require at least (N-I)(N-2) such calculations (assuming,

as was the case in Sec. II, that such procedures must--at

least in the worst case--generate best paths from the
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initial node to all other nodes). The best algorithm of

Sec. II, that which required no elaborate data-.preparation

2 2
or list keeping, involves N /2 additions and 2N comparisons.

Assuming additions and comparisons use equal amounts of

computation time, theory gives, as a reasonable upper-

bound estimate of potential future improvements for the

particular, pair-of-endpoints problem, a reduction in com-

putation time of about 20 percent. Actual computational

t >experiments indicate that computing optimal paths between

all pairs of nodes by N applications of the Dijkstra method

require3 roughly one and one-half-times the time consumed

by either algorithm specifically solving the all-pairs

problem. Indexing operations account for the difference

between theory and practice. Viewed from the perspective

-of a combinatorialist, the well is nearly dry. (Such may
3 3

not be the case for the 1L and !- procedures recommended

above for the problem with negative distances.)

I.a
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IV. DETERMINATION OF THE SECOND-SHORTEST PATH 4

It is occasionally desirable to know the value of the

second- (and third-, etc.) shortest path through a network.

For example, suppose that some complex quantitative (or

even qualitative) feature characterizes paths, and the

shortest path possessing this additional attribute is

sought. By ignoring the special aspect in question and

ordering paths from shortest to longest, the best path

with the additional feat ire can sometimes be determined

efficiently.

The analysis below initially considers the problem of

determining the second-best path between a specified initial

node 1 and a specified destination, N. Then it draws con-

clusions for more general problems. Two paths that do not

visit precisely the same nodes in the same order are con-

sidered different. The discussion ignores ties by assuming,

for simplicity, that all paths have different values. A

path with a loop is considered an admissible path, and in-

deed such a path can be second best, even for problems with

all dij > 0. Even node N may be visited twice along the

second-best path.

The earliest good algorithm known to this author was

proposed by Hoffman and Pavley [23J. A deviation from the
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the shortest path was defined to be a path that coincides

with the shortest path from its origin up to some node j

on the path (Q may be the origin or the terminal node),

then deviates directly to some node k not the next node of

the shortest path, and finally proceeds from k to the fixed

terminal node via the shortest path from k. Reference 23

shows the second-shortest path between specified initial

and terminal nodes to be a deviation from the shortest

path.

To solve the problem posed above, first the shortest

paths from all initial nodes to the specified destination

are determined by means of any efficient algorithm. Then,

all deviations from the shortest path between the specified

origin and terminus are determined, evaluated, and compared,

and the best noted. If the average node has M outgoing

links, and the average shortest path contains K arcs, an

average problem is solved in approximately MK additions

and comparisons beyond those required for solution of the

shortest-path problem.

Suppose second-shortest paths from all nodes to the

specified terminal node N are sought. Then we propose

the following modification of the Hoffman-Pavley method

[23]. After solving the shortest-path problem, determine
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VN, the length of the second-shortest path from N to N

(it may be infinity), by considering all deviations at N.

Then, for each node k whose shortest path to N contains j

only one arc, compare (a) the length of the shortest path

deviating at k and (b) dkN + VN* The minimum of these two

quantities is Vk, the length of the second-shortest path

from that node. Then, consider all nodes j that are two

arcs from N via the shortest path. For each, compare

(a) the length of the shortest path deviating at j and

(b) the length of the arc d.. that is the first arc of

the shortest path from j to N plus vi, the previously-de-

termined length of the second-shortest path from i to N.

The minimum value is v.. Repeat this iterative process
U

until all nodes are labelled. Note that the iteration is

performed on an index representing the number of arcs in

i! the shortest path from each node. This procedure requires

about MN additions and comparisons.

Reference 24, published subsequently to the above

method, gives a seemingly different procedure. Define u.

as the length of the shortest path from node i to a
specified terminal node N, and v. as the length of the

second-shortest path. Define mink (Xl,...,Xn) as the

kth-smallest value of the quantities x.. Then, according

to Ref. 24, vi is characterized by the equation
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min2 (d +u)

2-L ijS~j~i
Ss i= mmin'd +. i=l,... ,N-lI

v min 1 'Smin, (di + v.)

S~joi

S~(5)

VN mn 1  Nii+U].

SThe term min2 (dij + u.) determines the value of the

best path originating at node i and deviating from the

shortest path at that node i. The term mini(dij + v.)j

evaluates the best path consisting of any first arc, plus

the second-best continuation. The originators of the

method apparently did not notice that if the minimizing

node in the minI operation is not k (the next node of the

already-known shortest path from i) but some other node p,

then dip + up (an admissible solution to the min 2 expres-

sion) is less than dip + Vp (since u p<v ) Since the

term min!(d + v) can yield the overall minimum in

Eq. (5) only if j = k, whbrc k is the node after i on the

shortest path from i, the min 1 term in Eq. (5) can be re-
placed by merely dik + vk.

After this reduction by a factor of two in required

computation, we ca: calculate the method's approximate

:II
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computational requirements. Bellman and Kalaba [241

recommend solution of Eq. (5) by an iterative procedure,

where vi is superscripted on the left by (k + 1) and vj

on the right by (k). Defining M and N as above and L as

the average number of iterations until convergence of the

iterative solution of Eq. (5), the method requires an

average of NML additions and comparisons. L is less than

N-1 and may be as large as the number of arcs in the

shortest path containing the most arcs. However, after

replacing the minI term in Eq. (5) by dik + vk as dis-

cucsed above, solution can be greatly accelerated by using

a one-pass scheme first labelling nodes one-arc-by-shortest-

path from N, then two-arcs-by-shortest-path, etc. This

reduces the Bellman-Kalaba [24) procedure to precisely

the modified Hoffman-Pavley [23] algorithm recommended

above.

In sum ary, if only the second-shortest path connect-

ing a particular pair of nodes is desired, the method of

Ref. 23 is clearly best since it requires MK calculations

compared to MN for our improved version of the method of

Ref. 24, which must solve the all-initial-nodes problem in

order to resolve the particular-initial-node case. If a

problem involving a fixed terminal node and all possible

initial nodes is posed, the methods as modified in this
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[ Memorandum are equivalent. These conclusions contradict

those of Pollack's *vurvey paper [25].

For determination of the third-shortest paths from

all initial nodes to N, we reco nend the following general-

ization of the above procedure. If w. represents the

length of the third-shortest path from i, then

d ik + w uk
w. =min (6)3. min2 [di + u.] ."

if a single node k follows i along both the first- and

second-shortest paths. If k is the node following i on

the shortest path, and m is the node following i on the

second-shortest, then

dik Vk 1
•, d. + v

wi =min im m 1. (7)

min 3 [dij + uj

L j~i

L j

Once the functions u. and v. have been determined, the

function w. can be computed node-by-node by first computing
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w at nodes that are one arc distant from N via the shortest

path, then two arcs, etc. This one-pass procedure general- 'A

izes to the nth best-path problem, because the same function

appears on both the left and right in the appropriate equa,-

tion of the type of Eq. (6) above only if the p h-besr-

paths from i for p=l,...,n-I all go to the same second node.

While we assumed above, in order to avoid complicating

the explanations, that no two paths have the same length, _A

all of these methods can be generalized--at the expense of

a little additional bookkeeping--to incude the treatment

of possible ties. The problem of ties can sometimes be

avoided by slightly perturbing the data.

Reference 26 examines an entirely different procedure,

the efficiency.of which is difficult to determine.

Clarke, Krikorian, and Rausen [27] treat this problem

under the additional restriction that only loopless paths

are admissible. Their branch-and-bound algorithm involves

generating, listing, and processing all paths with certain

properties. The number of such paths is not easy to bound.

Certainly much of the elegance of the above algorithms is

lost. It is unclear how the procedure of Ref. 27 generally

compares with that of merely producing next-best paths

(possibly containing loops) by the above algorithms until

obtaining the desired number of loopless ones.
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It is not simple to modify Eq. (5) correctly so as

to exclude paths with loops. While Pollack [25] clearly

recognizes the problem, his subsequent scheme encounters

thcircularity, since determination of the k -best loopless

path may depend on the length of certain other k+p, p 2 1,

best paths, and conversely. Another scheme of Pollack [29]

is clearly correct, but computation increases rapidly with

k and the method can be recommended for only very small k.

Reference 25, p. 555, explains why. The considera-
tions it raises render incorrect the algorithm of Elmaghraby,
Ref. 28, Sec. 6.3.
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V. TIME-DEPENDENT LENGTHS OF ARCS

At least one paper [30] has studied the problem of

finding the fastest path between cities where the time

of travel between city i and city j depends on the time

of departure from city i. When t is the time of departure

from city i for city j, let dij (t) denote the travel time.

(If travel schedules are such that a delay before departure

decreases the time of arrival, dij(t) represents the

elapsed time between time t and the earliest possible

time of arrival.) This model ha& applications in the areas

of transportation planning and communication routing.

Cooke and Halsey [30] define fi(t) as the minimtm

time of travel to N, starting at city i at time t, and

establish the formula

fi(t) =min [dij(t) + f (t + d. (t))W (8)

fN(t) = 0

Assuming all the d ij (t) are defined at, and take on,

positive integer values, an iterative procedure is given

for finding the quickest paths from all cities to city N,

starting at city i at time 0. Defining T to be the maximum
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taken over all i of di(0) (a smaller T can be determined,

at some inconvenience, if this number is infinite), and

assuming all cities are connected at all times (perhaps

by links taking infinite time), the procedure requires

2 2
at most N T additions and comparisons.

This problem can be sol'ad by the method of Dijkstra

[1] discussed above (pp. 3-6) just as efficiently as

can the problem where the times (or distances) are not

time-dependent. Also, the restriction to integer-valued

times can be dropped and any real-valued times can be

treated. Define the tentative node (city) label f. to

be an upper bound on the earliest time of arrival at node

i. and permanent labels to be earliest possible (optimal)

times-of-arrival. First, permanently label node i (the
0

initiai node) zero and all other nodes infinity. Next,

tentatively label all nodes j with the minimum of the

current node label f. and the sum of f. and di .(f. ).
J 1 3j.

0 0 0

Then, find the minimum, non-permanent node label, say fk'

and declare it permanent. (f is the earliest possible

time of arrival at node k, leaving node i at time 0.)

Node k is then used to try to reduce the labels at all

tentatively labelled cities, by comparing fk + dkj(fk)

to the current label, and the minimum new temporary label
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is made permanent, etc. After at most N2 comparisons
N2

and - additions, city N is labelled and, leaving i at
2 0

time 0, the quickest paths to all nodes, including N,

are determined. As is the case for the closely related

Dijkstra procedure [1], about N 2/2 additions and 2N2 com-

parisons are required when implementing a method of

distinguishing temporarily from permanently labelled

nodes. If quickest paths from all cities to N are

desired, the algorithm must be repeated N-1 times; but,

even then, the procedure compares favorably, in both com-

putation and required assumptions, with the Cooke-Halsey

algorithm [30j.
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VI. SHORTEST PATHS VISITING SPECIFIED NODES

Given a set of N nodes and distances d.. z 0, suppose
13

we desire to find the shortest path between nodes 1 and

N that passes through the k-i nodes 2, 3,...,k • N-i,

caaled "specified nodes." A simple, but completely

erroneous, solution of this problem was reported by Saksena

adnd-r Kiuar [31] Noting this, we wish to give a solution

method.

The fallacy in Ref. 31 is the assertion (subject to

a proviso to follow) that the shortest path from a specified

node i to N passing through at least p of the specified nodes

enroute is comiposed of the shortest path from i to some

specified node j, followed by the shortest path from j to N

Spassing through at least p-r-l specified nodes, where r is

the number of specified nodes that lie on the shortest

unrestricted path frcm i to j. Saksena and Kumar [31] in-

correctly assert that this is true, provided--should

specified nodes occurring on the shortest path from i to

j also lie on the continuation path from j to N and there-

fore be counted twice-,-that at least p distinct specified

nodes lie on the path. Should some candidate path corres-

ponding to some j violate the duplication-of-nodes proviso

above, that possibility is inadmissible and the possibility

ii.
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of going initially from i to j by shortest path is dropped

from consideration. The procedure fails to note that, in

this case, some less short continuation from j passing

through at least p-r-l specified nodes, and avoiding

duplication of nodes, may yield a better path than the

best remaining path satisfying the conditions described

above. For example, in the network shown below, with all

nodes considered specified, suppose we seek the best path

from 1 to 5 passing through at least two intermediate nodes.

31

4 2 2 5

3 1
2

3

The best path from 1 to 4 has length 3 and happens to

pass through no nodes enroute, and the best continuation

from 4 to 5 passing through at least one node has length

4; hence, this possibility has length 7. The best path
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from 1 to 3 has length 2 and l appens to pass through no

nodes enroute, and the best continuation from 3 to 5

passing through one node has length infinity (no such

continuation from 3 exists). The best path from 1 to 2

has length 1 and happens to pass through no nodes enroute,

and the best continuation from 2 to 9 passing through one

node enroute has length 2 (it returns to node 1), yielding

a sum of 3. However, it is inadmissible as a path through

two intermediate specified nodes because node I is counted

twice. The answer, by the Saksena-Kumar algorithm [31],

would then be 7, the best of the other alternatives. Yet,

the path 1-2-3-5 has length 4 and is admissible. This is
I

an example of a best first portion and a second-best con-

tinuation being optimal. (Or, the same path can alter-

natively be viewed as the second-best path from I to 3

followed by the best continuation.) No simple modification

of the referenced method seems to handle this kind of

situation.

Assuming paths with loops are admissible, the problem

can be correctly solved as follows. First solve the

shortest-path problem for the N-node network for all pairs

of initial and final nodes. Let d!. represent the length

of the shortest path from node i to j. Then, solve the

4:
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(k + l)-city "traveling-salesman" problem for the shortest

path from 1 to N passing through nodes 2, 3,...,k, where

the distance from node i to j is d!.. Reference 32
13J

discusses methods of solution. Wh-ile no easy solutions

exist for the traveling-salesman problem, the speci)ied-

city problem can certainly be no easier than the traveling-

salesman problem of dimension k + 1, since if k = N-1 it

is the travr'iing-salesman problem.

-11

II_ I~ II IIIl m l i
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VII. CONCLUSION

We have referenced, evaluated, and occasionally

modified various algorithms for computationally solving

certain shortest-path problems. By collecting contribu-

tions from several disciplines, we hope to re-orient and

revitalize the sometimes rather incestuous research of

each. The author would appreciate notification of over-

looked or new significant research in this area.
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